
E1BAPP06 11/10/2010 15:18:40 Page 1

Appendix F: MATLAB’s
Symbolic Math Toolbox Tutorial

F.1 Introduction

Readers who are studying MATLAB may want to explore the additional function-
ality of MATLAB’s Symbolic Math Toolbox. Before proceeding, the reader should
have studied Appendix B, the MATLAB tutorial, including Section B.1, which is
applicable to this appendix.

MATLAB’s Symbolic Math Toolbox Version 5.3 in addition to MATLAB
Version 7.9 (R2009b) and the Control System Toolbox Version 8.4 is required in
order to add symbolic mathematics capability to your M-files.

The M-files in this appendix are available elsewhere on this Web site.
Symbolic math commands are used in your MATLABM-files right along with

your standard MATLAB statements. The only additional requirement is to declare
symbolic variables before they are used with the statement syms x1 x2..., where
xi are symbolic variables.

Some of the added capabilities that the Symbolic Math Toolbox yields for
control systems analysis and design include the following:

1. Functions and equations can be entered symbolically. That is, alpha characters as
well as numerical characters can be used in your M-files. For example, you can
enter B=x^2+3�x+7, instead of B=[1 3 7]. You could even enter B=a�x^2+b�x
+c and obtain its factors as

[2 1/2]
[-b + (b - 4 a c)]
[1/2 ———————————————————]
[a]
[]
[2 1/2]
[-b - (b - 4 a c)]
[1/2 ———————————————————]
[a]

2. Symbolic expressions can be manipulated algebraically and simplified.

3. Transfer functions can be typed almost as written, making your M-files more
readable. For example, the statement, G=(s+1)�(s+2)/[(s^2+3�s+10)�(s+4)]

1

E1BAPP06 11/10/2010 15:18:40 Page 2

would replace the three statements, numg=poly([�1 �2]), deng=
conv([1 3 10),[1 4]), and G=tf(numg,deng).

4. Laplace and z-transforms as well as their inverses can be entered and found in
symbolic form.

5. Functions can be ‘‘pretty printed’’ for clarity in theMATLABCommandWindow
and printed output.

These are only a few advantages of using the Symbolic Math Toolbox. This
appendix will explore more. The reader is encouraged not to stop exploration at the
end of Appendix F, since there is so much more than can be covered here. The
Bibliography at the end of this appendix gives references for further pursuit.

The format of the examples in this appendix follows Appendix B. Symbolic
programs use the designation: chapter <number> symbolic program<number>,
that is, ch2sp3. Thus, the programs in this appendix can be distinguished from
Appendix B programs by the use of ‘‘sp’’ (symbolic program) before the program
number, rather than ‘‘p’’ (program), that is, ch2p3. SymbolicMath Toolbox examples
are included for Chapters 2, 3, 4, 6, and 13. The reader is encouraged, however, to
apply what is learned to other chapters.

F.2 Symbolic Math Toolbox Examples

Chapter 2: Modeling in the Frequency Domain
ch2sp1 MATLAB’s calculating power is greatly enhanced using the Symbolic
Math Toolbox. In this example we demonstrate its power by calculating inverse
Laplace transforms of F(s). The beginning of any symbolic calculation requires
defining the symbolic objects. For example, the Laplace transform variable, s, or the
time variable, t, must be defined as a symbolic object. This definition is performed
using the syms command. Thus, syms s defines s as a symbolic object; syms t
defines t as a symbolic object; and syms s t defines both s and t as symbolic
objects. We need only define objects that we input to the program. Variables
produced by the program need not be defined. Thus, if we are finding inverse
Laplace transforms, we need only define s as a symbolic object, since t results from
the calculation. Once the object is defined, we can then type Fas a function of s as we
normally would write it. We do not have to use vectors to represent the numerator
and denominator. The Laplace transforms or time functions can also be printed in
theMATLAB CommandWindow as we normally would write it. This form is called
pretty printing. The command is pretty(F), where F is the function we want to
pretty print. In the code below, you can see the difference between normal printing
and pretty printing if you run the code without the semicolons at the steps where the
functions, F or f, are defined. Once F is defined as F(s), we can find the inverse
Laplace transform using the command ilaplace(F). In the following example, we
find the inverse Laplace transforms of the frequency functions in the examples used
for Cases 2 and 3 in Section 2.2 in the text.

’(ch2sp1) ’ % Display label.
syms s % Construct symbolic object for

% Laplace variable ’s ’.
’Inverse Laplace transform ’ % Display label.
F=2/[(s+1)*(s+2)^2]; % Define F(s) form case 2 example.

2 Appendix F: MATLAB’s Symbolic Math Toolbox Tutorial

E1BAPP06 11/10/2010 15:18:40 Page 3

’F(s) from case 2 ’ % Display label.
pretty (F) % Pretty print F(s)
f=ilaplace(F); % Find inverse Laplace transform.
’f(t) for case 2 ’ % Display label.
pretty(f) % Pretty print f(t) for Case 2.
F=3/[s*(s^2+2*s+5)]; % Define F(s) from Case 3 example.
’F(s) for Case 3 ’ % Display label.
pretty(F) % Pretty print F(s) for Case 3.
f=ilaplace(F); % Find inverse Laplace transform.
’f(t) for Case 3 ’ % Display label.
pretty(f) % Pretty print f(t) for Case 3.
Pause

ch2sp2 In this example, we find Laplace transforms of time functions using the
command, laplace(f), where f is a time function, f(t). As an example, we use the
time functions that resulted from the calculations in Cases 2 and 3 in Section 2.2 in
the text and work in reverse to obtain their Laplace transforms. We will see that the
command, laplace(f), yields F(s) in partial fractions. In addition to pretty
printing discussed in the previous example, the Symbolic Math Toolbox contains
other commands that can change the look of the displayed result for readability and
form. Some of these commands are: collect(F)—collect common coefficient
terms of F; expand(F)—expands product of factors of F; factor(F)—factors
F; simple(F)—finds simplest form of Fwith the least number of terms; simplify
(F)—simplifies F; vpa(expression, places)—standing for variable precision
arithmetic, this command converts fractional symbolic terms into decimal terms with
a specified number of decimal places. For example, the symbolic fraction, 3/16,
would be converted to 0.1875 if the argument, places, were 4. In the example
below, we find the Laplace transform of a time function. The result is displayed
as partial fractions. To combine the partial fractions, we use the command,
simplify(F), where F is the Laplace transform of f(t) found using laplace(f).
Finally, we use F=vpa(F,3) to convert the symbolic fractions to decimals in the
displayed result.

’(ch2sp2) ’ % Display label.
syms t % Construct symbolic object for

% time variable ’t ’.
’Laplace transform ’ % Display label.
’f(t) from Case 2 ’ % Display label.
F=2*exp(-t)-2*t*exp(-2*t)-2*exp(-2*t);

% Define f(t) from Case 2 example.
pretty(f) % Pretty print f(t) from Case 2

% example.
’F(s) for Case 2 ’ % Display label.
F=laplace(f); % Find Laplace transform.
pretty(F) % Pretty print partial fractions of

% F(s) for Case 2.
F=simplify(F); % Combine partial fractions.
pretty(F) % Pretty print combined partial

% fractions.
’f(t) for Case 3 ’ % Display label.
f=3/5-3/5 *exp(-t)*[cos(2 *t)+(1/2) *sin(2 *t)];

% Define f(t) from Case 3 example.
pretty (f) % Pretty print f(t) for Case 3.

F.2 Symbolic Math Toolbox Examples 3

E1BAPP06 11/10/2010 15:18:40 Page 4

’F(s) for Case 3 - Symbolic fractions ’
% Display label.

F=laplace(f); % Find Laplace transform.
pretty(F) % Pretty print partial fraction of

% F(s) for Case 3.
’F(s) for Case 3 - Decimal representation ’

% Display label.
F=vpa(F,3); % Convert symbolic numerical

% fractions to 3-place decimal
% representation for F(s).

pretty(F) % Pretty print decimal
% representation.

’F(s) for Case 3 - Simplified % Display label.
F=simplify(F); % Combine partial fractions.
pretty(F) % Pretty print combined partial

% fractions.
pause

ch2sp3 MATLAB’s Symbolic Math Toolbox may be used to simplify the input of
complicated transfer functions as follows: Initially, input the transfer function G(s) =
numg/deng via symbolic math statements. Then convert G(s) to an LTI transfer
function object. This conversion is done in two steps. The first step uses the command
[numg,deng]=numden(G) to extract the symbolic numerator and denominator of G.
The second step converts, separately, the numerator and denominator to vectors using
the commandsym2poly(S), whereS is a symbolic polynomial. The last step consists of
forming the LTI transfer function object by using the vector representation of the
transfer function’s numerator and denominator. As an example, we form the LTI object
GðsÞ ¼ ½54ðsþ27Þðs3þ52s2þ37sþ73Þ�=½sðs4þ872s3þ437s2þ89sþ65Þ ðs2 þ 79sþ36Þ�,
making use of MATLAB’s Symbolic Math Toolbox for simplicity and readability.

’(ch2sp3) ’ % Display label.
syms s % Construct symbolic object for

% frequency variable ’s ’.
G=54*(s+27)*(s^3+52*s^2+37*s+73)...
/(s*(s^4+872*s^3+437*s^2+89*s+65)*(s^2+79*s+36));

% Form symbolic G(s).
’Symbolic G(s) ’ % Display label.
Pretty(G) % Pretty print symbolic G(s).
[numg,deng]=numden(G); % Extract symbolic numerator and

% denominator.
numg=sym2poly(numg); % Form vector for numerator of

% G(s).
deng=sym2poly(deng); % Form vector for denominator of

% G(s).
’LTI G(s) in Polynomial Form ’ % Display label.
Gtf=tf(numg,deng) % Form and display LTI object for

% G(s) in polynomial form.
’LTI G(s) in Factored Form ’ % Display label.
Gzpk=zpk(Gtf) % Convert G(s) to factored form.
pause

ch2sp4 (Example 2.10) MATLAB’s Symbolic Math Toolbox may be used to
simplify the solution of simultaneous equations by using Cramer’s rule. A system

4 Appendix F: MATLAB’s Symbolic Math Toolbox Tutorial

E1BAPP06 11/10/2010 15:18:40 Page 5

of simultaneous equations can be represented in matrix form by Ax¼B, where A is
the matrix formed from the coefficients of the unknowns in the simultaneous
equations, x is a vector containing the unknowns, and B is a vector containing
the inputs. Cramer’s rule states that xk the kth element ot the solution vector, x, is
found using xk ¼ detðAkÞ=detðAÞ, where Ak is the matrix formed by replacing the
kth column of matrix A with the input vector, B. In the text we refer to det(A) as
‘‘delta.’’ In MATLAB, matrices are written with a space or comma separating the
elements of each row. The next row is indicated with a semicolon or carriage return.
The entire matrix is then enclosed in a pair of square brackets. Applying the above to
the solution of Example 2.10: A=[(R1+L�s)�L�s;�L�s (L�s+R2+(1/(c�s)))]
and Ak=[(R1+L�s) V;�L�s 0]. The function det(matrix) evaluates the deter-
minant of the square matrix argument. Let us now find the transfer function
GðsÞ ¼ I2ðsÞ=VðsÞ, asked for in Example 2.10. The command simple(S), where
S is a symbolic function, is introduced in the solution. Simple(S) simplifies the
solution by shortening the length of S. The use of simple(I2) shortens the solution
by combining like powers of the Laplace variable, s.

’(ch2sp4) Example 2.10 ’ % Display label.
Syms s R1 R2 L c V % Construct symbolic objects for

% frequency variable ’s ’, and
% ’R1 ’, ’R2 ’, ’L ’, ’c ’, and ’V ’.
% Note: Use lower-case ’c ’
in declaration for
% capacitor.

A2=[(R1+L*s) V;-L*s 0] % Form Ak = A2.
A=[(R1+L*s) -L*s;-L*s (L*s+R2+(1/(c*s)))]

% Form A.
I2=det(A2)/det(A); % Use Cramer ’s rule to solve for

% I2(s).
I2=simple(I2); % Reduce complexity of I2(s)
G=I2/V; % Form transfer function,

% G(s) = I2(s)/V(s).
’G(s) ’ % Display label.
pretty (G) % Pretty print G(s).
pause

Chapter 3: Modeling in the Time Domain
ch3sp1 (Example 3.6) MATLAB’s SymbolicMath Toolboxmay be used to perform
matrix operations. The code for these operations is intuitive and readable. The opera-
tions are addition (+), subraction (�), inverse (^�1), andmatrix raised to a power n
(^n). We demonstrate by solving Example 3.6 in the text using Eq. 3.73 directly.

’(ch3sp1) Example 3.6 ’ % Display label.
syms s % Construct symbolic object for

% frequency variable ’s ’.
A=[0 1 0;0 0 1;-1 -2 -3]; % Create matrix A.
B=[10;0;0]; % Create vector B.
C=[1 0 0]; % Create vector C.
D=0; % Create D.
I=[1 0 0;0 1 0;0 0 1]; % Create identity matrix.
’T(s) ’ % Display label.
T=C*((s*I-A)^-1)*B+D; % Find transfer function.
pretty(T) % Pretty print transfer function.
pause

F.2 Symbolic Math Toolbox Examples 5

E1BAPP06 11/10/2010 15:18:40 Page 6

Chapter 4: Time Response
Ch4sp1 (Example 4.11) MATLAB’s Symbolic Math Toolbox, with its ability to
perform matrix operations, lends itself to the Laplace transform solution of state
equations. Also, the command [V,D]=eig(A) allows us to find the eigenvalues of a
square matrix, A, which are the diagonal elements of diagonal matrix D. We
demonstrate by solving Example 4.11.

’(ch4sp1) Example 4.11 ’ % Display label.
syms s % Construct symbolic object for

% frequency variable ’s ’.
’a ’ % Display label.
A=[0 1 0;0 0 1;-24 -26 -9]; % Create matrix A.
B=[0;0;1]; % Create vector B.
X0=[1;0;2]; % Create initial condition vector,

% X(0).
U=1/(s+1); % Create U(s).
I=[1 0 0;0 1 0;0 0 1]; % Create identity matrix.
X=((s*I-A)^-1)*(X0+B*U); % Find Laplace transform of state

% vector.
x1=ilaplace(X(1)); % Solve for X1(t).
x2=ilaplace(X(2)); % Solve for X2(t).
x3=ilaplace(X(3)); % Solve for X3(t).
y=x1+x2; % Solve for output, y(t).
y=vpa(y,3); % Convert fractions to decimals.
’y(t) ’ % Display label.
pretty(y) % Pretty print y(t).
’b ’ % Display label.
[V,D]=eig(A); % Find eigenvalues, which are the

% diagonal elements of D.
’Eigenvalues on diagonal ’ % Display label.
D % Display D.
pause

ch4sp2 (Example 4.12/4.13) In this example we use MATLAB’s Symbolic Math
Toolbox to solve state equations in the time domain. We make use of the Symbolic
Math Toolbox’s ability to perform integration. We first solve for the state-transition
matrix by taking the inverse Laplace transform of ðsI�AÞ�1. We then use the
convolution integral to obtain the solution. Integration is performed using the
command int(S,v,a,b), where S is the function to be integrated, v is the
variable of integration, a is the lower limit of integration, and b is the upper limit
of integration. As an example we solve Example 4.12 in the text. The state-transition
matrix is obtained by the method demonstrated in Example 4.13 in the text.

’(ch4sp2) Example 4.12/4.13 ’ % Display label.
Syms s t tau % Construct symbolic object for

% frequency variable ’s ’, ’t ’,
% and ’tau ’.

’a ’ % Display label.
A=[0 1;-8 -6] % Create matrix A.
B=[0;1] % Create vector B.
X0=[1;0] % Create initial condition vector,

% X(0).
U=1 % Create u(t).

6 Appendix F: MATLAB’s Symbolic Math Toolbox Tutorial

E1BAPP06 11/10/2010 15:18:40 Page 7

I=[1 0;0 1]; % Create identity matrix.
’E=(s*I-A)^-1 ’ % Display label.
E=((s*I-A)^-1) % Find Laplace transform of state-

% transition matrix,(sI-A)^-1.
Fi11=ilaplace(E(1,1)); % Take inverse Laplace transform
Fi12=ilaplace(E(1,2)); % of each element
Fi21=ilaplace(E(2,1)); % of (sI-A)^-1
Fi22=ilaplace(E(2,2)); % to find state-transition matrix.
’Fi(t) ’ % Display label.
Fi=[Fi11 Fi12;Fi21 Fi22]; % Form state-transition matrix,

% Fi(t).
pretty(Fi) % Pretty print state-transition

% matrix, Fi(t).
Fitmtau=subs(Fi,t,t-tau); % Form Fi(t-tau).
’Fi(t-tau) ’ % Display label.
pretty(Fitmtau) % Pretty print Fi(t-tau).
X=Fi*X0+int(Fitmtau*B*1,tau,0,t); % Solve for x(t).
X=simple(x); % Collect terms.
X=simplify(x); % Simplify x(t).
’x(t) ’ % Display label.
pretty(x) % Pretty print x (t).
pause

Chapter 6: Stability
ch6sp1 (Example 6.2) MATLAB’s Symbolic Math Toolbox may be used conve-
niently to calculate the values in a Routh table. The toolbox is particularly useful for
more complicated tables, where symbolic objects, such as epsilon, are used. In this
example we represent each row of the Routh table by a vector. Expressions are
written for subsequent row elements by using the equations given in Table 6.2 of the
text. TheMATLAB command det(M) is used to find the determinant of the square
matrix, M, as shown for each row element in Table 6.2. Further, we test the previous
row’s first element to see if it is zero. If it is zero, it is replaced by epsilon, e, in the
next row’s calculation. The preceding logic is performed usingMATLAB’s IF/ELSE/
END as shown in the code below.

We now demonstrate the making of a Routh table using the Symbolic Math
Toolbox for a problem that requires the epsilon method to complete the table. The
following program produces the Routh table for Example 6.2 in the text. Also, for
clarity, we convert all rows to symbolic objects, simplify, and pretty print after
forming the table. CAUTION: In general, the results of this program are not valid if
an entire row is zero as e approaches zero, such as [e 0 0 0]. This case must be
handled differently, as discussed in text Section 6.3 in the subsection, ‘‘Entire Row Is
Zero.’’

’(ch6sp1) Example 6.2 ’ % Display label.
% -det([si() si(); sj() sj()])/sj()

% Template for use in each cell.
syms e % Construct a symbolic object for

% epsilon.
%%
s5=[1 3 5 0 0]; % Create s^5 row of Routh table.
%%
s4=[2 6 3 0 0]; % Create s^4 row of Routh table.
%%

F.2 Symbolic Math Toolbox Examples 7

E1BAPP06 11/10/2010 15:18:40 Page 8

if -det([s5(1) s5(2);s4(1) s4(2)])/s4(1)==0
s3=[e ...

-det([s5(1) s5(3);s4(1) s4(3)])/s4(1) 0 0];
% Create s^3 row of Routh table
% if 1st element is 0.

else
s3=[-det([s5(1) s5(2);s4(1) s4(2)])/s4(1) ...

-det([s5(1) s5(3);s4(1) s4(3)])/s4(1) 0 0];
% Create s^3 row of routh table
% if 1st element is not zero.

end
%%
if -det([s4(1) s4(2);s3(1) s3(2)])/s3(1)==0
s2=[e ...

-det([s4(1) s4(3);s3(1) s3(3)])/s3(1) 0 0];
% Create s^2 row of Routh table
% If 1st element is 0.

else
s2=[-det([s4(1) s4(2);s3(1) s3(2)])/s3(1) ...

-det([s4(1) s4(3);s3(1) s3(3)])/s3(1) 0 0];
% Create s^2 row of Routh table
% if 1st element is not zero.

end
%%
if -det([s3(1) s3(2);s2(1) s2(2)])/s2(1)==0
s1=[e ...

-det([s3(1) s3(3);s2(1) s2(3)])/s2(1) 0 0];
% Create s^1 row of Routh table
% if 1st element is 0.

else
s1=[-det([s3(1) s3(2);s2(1) s2(2)])/s2(1) ...
-det([s3(1) s3(3);s2(1) s2(3)])/s2(1) 0 0];

% Create s^1 row of Routh table
% if 1st element is not zero.

end
%%%
s0=[-det([s2(1) s2(2);s1(1) s1(2)])/s1(1) ...
-det([s2(1) s2(3);s1(1) s1(3)])/s1(1) 0 0];

% Create s^0 row of Routh table.
%%%
’s5 ’ % Display label.
s5=sym(s5); % Convert s5 to a symbolic object.
s5=simplify(s5); % Simplify terms in s^5 row.
pretty(s5) % Pretty print s^5 row.
’s4 ’ % Display label.
s4=sym(s4); % Convert s4 to a symbolic object.
s3=simplify(s4); % Simplify terms in s^4 row.
pretty(s4) % Pretty print s^4 row.
’s3 ’ % Display label.
s3=sym(s3); % Convert s3 to a symbolic object.
s3=simplify(s3); % Simplify terms in s^3 row.
pretty(s3) % Pretty print s^3 row.
’s2 ’ % Display label.
s2=sym(s2); % Convert s2 to a symbolic object.
s2=simplify(s2); % Simplify terms in s^2 row.

8 Appendix F: MATLAB’s Symbolic Math Toolbox Tutorial

E1BAPP06 11/10/2010 15:18:40 Page 9

pretty(s2) % Pretty print s^2 row.
’s1 ’ % Display label.
s1=sym(s1); % Convert s1 to a symbolic object.
s1=simplify(s1); % Simplify terms in s^1 row.
pretty(s1) % Pretty print s^1 row.
’s0 ’ % Display label.
s0=sym(s0); % Convert s0 to a symbolic object.
s0=simplify(s0); % Simplify terms in s^0 row.
pretty(s0) % Pretty print s^0 row.
pause

ch6sp2 (Example 6.9)
MATLAB’s Symbolic Math Toolbox also may be used conveniently to calculate the
values in a Routh table that contains a variable gain, K. The technique is similar to
the previous example, ch6sp1, except that K, rather than e, is used as the symbolic
object. We now demonstrate the solution of Example 6.9 in the text usingMATLAB
and MATLAB’s Symbolic Math Toolbox.

’(ch6sp2) Example 6.9 ’ % Display label.
% -det([si() si();sj() sj()])/sj()

% Template for use in each cell.
syms K % Construct a symbolic object for

% gain, K.
s3=[1 77 0 0]; % Create s^3 row of Routh table.
s2=[1 77 0 0]; % Create s^2 row of Routh table.
s1=[-det([s3(1) s3(2);s2(1) s2(2)])/s2(1) ...
-det([s3(1) s3(3);s2(1) s2(3)])/s2(1) 0 0];

% Create s^1 row of Routh table.
s0=[-det([s2(1) s2(2);s1(1) s1(2)])/s1(1) ...
-det([s2(1) s2(3);s1(1) s1(3)])/s1(1) 0 0];

% Create s^0 row of Routh table.
’s3 ’ % Display label.
s3=sym(s3); % Convert s3 to a symbolic object.
s3=simplify(s3); % Simplify terms in s^3 row.
pretty(s3) % Pretty print s^3 row.
’s2 ’ % Display label.
s2=sym(s2); % Convert s2 to a symbolic object.
s2=simplify(s2); % Simplify terms in s^2 row.
pretty(s2) % Pretty print s^2 row.
’s1 ’ % Display label.
s1=sym(s1); % Convert s1 to a symbolic object.
s1=simplify(s1); % Simplify terms in s^1 row.
pretty(s1) % Pretty print s^1 row.
’s0 ’ % Display label.
s0=sym(s0); % Convert s0 to a symbolic object.
s0=simplify(s0); % Simplify terms in s^0 row.
pretty(s0) % Pretty print s^0 row.
pause

Chapter 13: Digital Control Systems
ch13sp1 (Example 13.1) MATLAB’s Symbolic Math Toolbox and the command
ztrans(f) can be used to find the z-transform of a time function, f, represented as
f(nT). MATLAB assumes that the default sampled-time independent variable is n
and the default transform independent variable is z. If you want to use k instead of n,

F.2 Symbolic Math Toolbox Examples 9

E1BAPP06 11/10/2010 15:18:40 Page 10

that is, f(kT), use ztrans(f,k,z). This command overrides MATLAB’s defaults
and assumes the sampled-time independent variable to be k. Let us solve Example
13.1 using MATLAB’s Symbolic Math Toolbox.

’(ch13sp1) Example 13.1 ’ % Display label.
syms n T % Construct symbolic objects for

% ’n ’and ’T ’.
’f(nT) ’ % Display label.
f=n*T; % Define f(nT).
pretty(f) % Pretty print f(nT).
’F(z) ’ % Display label.
F=ztrans(f); % Find z-transform, F(z).
pretty(F) % Pretty print F(z).
pause

ch13sp2 (Example 13.2) MATLAB’s Symbolic Math Toolbox and the command
iztrans(F) can be used to find the time-sampled function represented as f(nT),
given its z-transform, F(z). If you want the sampled time function returned as f(kT),
then change MATLAB’s default independent sampled-time variable by using the
command iztrans(F,k). Let us solve Example 13.2 using MATLAB’s Symbolic
Math Toolbox.

’(ch13sp2) Example 13.2 ’ % Display label.
syms z k % Construct symbolic objects for

% ’z ’and ’k ’.
’F(z) ’ % Display label.
F=0.5*z/((z-0.5)*(z-0.7)); % Define F(z).
pretty (F) % Pretty print F(z).
’f(kT) ’ % Display label.
f=ztrans(F,k); % Find inverse z-transform, f(kT).
pretty(f) % Pretty print f(kT).
’f(nT) ’ % Display label.
f=iztrans(F); % Find inverse z-transform, f(nT).
pretty(f) % Pretty print f(nT).
pause

ch13sp3 (Example 13.4) MATLAB’s Symbolic Math Tolbox can be used to find
the z-tansform of a transfer function, G(s), in cascade with a z.o.h. Two new
commands are introduced. The first, compose(f,g), allows a variable g to replace
the variable t in f(t). We use this command to replace t in g2(t) with nT before taking
the z-transform. The other new command is subs(S,old,new). Subs stands for
symbolic substitution. Old is a variable contained in S. New is a numerical or
symbolic quantity to replace old. We use subs to replaceT inG(z) with a numerical
value. To find the z-transform of a transfer function,G(s), in cascade with a z.o.h. by
using MATLAB’s Symbolic Math Toolbox, we perform the following steps: (1)
Construct G2ðsÞ ¼ GðsÞ=s; (2) find the inverse Laplace transform of G2(s); (3)
replace t with nT in g2(t); (4) find GðzÞ ¼ ð1� z�1ÞG2ðzÞ; (5) substitue a numerical
value for T. Let us solve Example 13.4 using MATLAB’s Symbolic Math Toolbox.

’(ch13sp3) Example 13.4 ’ % Display label.
syms s z n T % Construct symbolic objects for

% ’s ’, ’z ’, ’n ’, and ’T ’.
G2s=(s+2)/(s*(s+1)); % Form G2(s)=G(s)/s.

10 Appendix F: MATLAB’s Symbolic Math Toolbox Tutorial

E1BAPP06 11/10/2010 15:18:40 Page 11

’G2(s)=G(s)/s ’ % Display label.
pretty (G2s) % Pretty print G2(s).
’g2(t) ’ % Display label.
g2t=ilaplace(G2s); % Find g2(t).
pretty(g2t) % Pretty print g2(t).
g2nT=compose(g2t,n*T); % Find g2 (nT).
’g2(nT) ’ % Display label.
pretty(g2nT) % Pretty print g2(nT).
Gz=(1-z^-1)*ztrans(g2nT); % Find G(z) = (1-z^-1)G2(z).
Gz=simplify(Gz); % simplify G(z).
’G(z)=(1-z^-1)G2(z) ’ % Display label.
pretty(Gz) % Pretty print G(z).
Gz=subs (Gz,T,0.5); % Let T=0.5 in G(z).
Gz=vpa(simplify(Gz),4); % Simplify G(z) and evaluate

% numerical values to 4 places.
’G(z) evaluated for T=0.5 ’ % Display label.
pretty(Gz) % Pretty print G(z) with numerical

% values.
pause

F.3 Command Summary

diff (S, ’x ’) Differentiate the symbolic function, S, with respect to variable, x.

compose(f,g) Substitute g(y) for x in f(x).

ilaplace(X) Find inverse Laplace transform of X(s).

int(S,v,a,b) Integrate S with respect to v from lower limit a to upper limit b.

iztrans(F,k) Find inverse z-transform. Finds f(kT) given F(z).

Without optional field, k, finds f(nT).

laplace(x) Find Laplace transform of x(t).

numden(G) Extract symbolic numerator and denominator fromG(s).

pretty(x) Pretty print x.

simple(x) Find simplest from of symbolic object x.

simplify(x) Simplify x.

subs(S,old,new) Substitute new for old in symbolic S.

sym(v) Convert v to a symbolic object.

Syms x y z Declare x, y, and z to be symbolic objects.

Sym2poly(P) Convert symbolic polynomial, P, to a vector.

Vpa(x,D) Use variable precision arithmetic. Convert fractional symbolic
values to decimal withD places.

ztrans(f) Find z-transform of f(nT).

F.3 Command Summary 11

E1BAPP06 11/10/2010 15:18:40 Page 12

Bibliography
The MathWorks. Control System ToolboxTM 8 Getting Started Guide. The MathWorks.
Natick, MA. 2000–2009.

The MathWorks. MATLABj 7 Getting Started Guide. The MathWorks. Natick, MA. 1984–
2009.

The MathWorks. Symbolic Math ToolboxTM 5 User’s Guide. The MathWorks. Natick, MA.
1993–2010.

12 Appendix F: MATLAB’s Symbolic Math Toolbox Tutorial

